What children say when they are asked what they think about the brain.

(update May 19th 2018, this is an old post I am very sporadically updating)

I am interested in what we think of when we think of “the brain.” I am planning a post compiling the various technological metaphors that are used when people talk about the brain – from the steam engine  / pneumatic metaphors of the 19th Century to the computer metaphors of today. Of course, these metaphors (especially the computer one) assume a kind of literal meaning so that we forget that the brain really isn’t  a computer.

Anyhow, one interesting topic that may or may not have been systematically and academically studied is what children think of when they think of the brain. There is almost certainly some academic work out there on this – my own plan is to ask every few months the following questions:

What is a brain?

Where is  your brain?

What does your brain do?

 Until the children in question tell me to go away.

And because I am interested in sleep also, I will ask

What happens when you sleep?

(May 2018 update — um I haven’t actually done this)

February 24th 2015

Child aged four and four months

Where is your brain?
(touches neck, goes off and plays elsewhere)

Later on

Where is your brain?

(touches head)
What does your  brain do?

It keeps your forehead in place

May 24th 2015

Same child

 

What is a brain?

Your forehead’s bone

Where is  your brain?

Here (touches forehead)

What does your brain do?

Makes you think. Anything else? Mmm -mmm

Oct 2nd 2015

Same child.

What is a brain?

In your head.

Where is your brain?

In your forehead.

What does your brain do?

It makes you think.

Anything else?

That’s all.

May 18th 2018

What is a brain?

A brain is weird looking thing that helps your memeory stuff and keeps you breathing. Without a brain you would forget how to breathe and die

Where is your brain?

Your brain is on the top of your head in your skull. It has bones surrounding it so you can’t get anything in your brain except for your memory love and stuff like that.
What does your brain do?

It helps you live, helps you put stuff in your mind and helps you breathe. It helps you hug and remember what your hobby is.

Advertisements

Presentation by Pedro de Bruyckere: Urban Myths about Learning and Technology

An excellent presentation by Pedro De Bruyckere, co author of the recent paper on the myth of the digital native I blogged about before… “I believe in education, I believe in teachers… but do I believe in technology in education? It depends”

Obviously these are slides which can’t compete with the real thing and clearly Pedro de Bruyckere has a rich sense of humour!

From experience to meaning...

This is the presentation I gave at the National ResearchED conference, September 9 2017. The presentation is in part based on our book Urban Myths about Learning and Education and in part based on the recent article I co-wrote with Paul Kirschner published in Teaching and Teacher Education (yes the one that was mentioned in Nature).

View original post

Language recognition in the womb – Fetal rhythm-based language discrimination – study from NeuroReport

I have blogged before about on the tendency to grandiosity of neuroscience, or rather (very often) how the science media portray neuroscience. This phobia of neurohype is not the same as a suspicion of neuroscience. The ingenuity of the methodology of studies like this is staggering. I don’t have access via my usual library sources to recent issues of NeuroReport so I’m afraid that I can’t assess the study directly (in so far as as I am at a certain stage of clinical practice, and the consequent distance from what personal study of relevance I have done)

LargeRollover.00001756-201708010-00000.CV

Fetal rhythm-based language discrimination: a biomagnetometry study
Minai, Utakoa; Gustafson, Kathleenb; Fiorentino, Roberta; Jongman, Allarda; Sereno, Joana

Neuroreport: 5 July 2017 – Volume 28 – Issue 10 – p 561–564
Abstract

Using fetal biomagnetometry, this study measured changes in fetal heart rate to assess discrimination of two rhythmically different languages (English and Japanese). Two-minute passages in English and Japanese were read by the same female bilingual speaker. Twenty-four mother–fetus pairs (mean gestational age=35.5 weeks) participated. Fetal magnetocardiography was recorded while the participants were presented first with passage 1, a passage in English, and then, following an 18 min interval, with passage 2, either a different passage in English (English–English condition: N=12) or in Japanese (English–Japanese condition: N=12). The fetal magnetocardiogram was reconstructed following independent components analysis decomposition. The mean interbeat intervals were calculated for a 30 s baseline interval directly preceding each passage and for the first 30 s of each passage. We then subtracted the mean interbeat interval of the 30 s baseline interval from that of the first 30 s interval, yielding an interbeat interval change value for each passage. A significant interaction between condition and passage indicated that the English–Japanese condition elicited a more robust interbeat interval change for passage 2 (novelty phase) than for passage 1 (familiarity phase), reflecting a faster heart rate during passage 2, whereas the English–English condition did not. This effect indicates

that fetuses are sensitive to the change in language from English to Japanese. These findings provide the first evidence for fetal language discrimination as assessed by fetal biomagnetometry and support the hypothesis that rhythm constitutes a prenatally available building block in language acquisition.

Can fMRI solve the mind-body problem? Tim Crane, “How We Can Be”, TLS, 24/05/17

In the current TLS, an excellent article by Tim Crane on neuroimaging, consciousness, and the mind-body problem. Many of my previous posts here related to this have endorsed a kind of mild neuro-scepticism, Crane begins his article by describing an experiment which should the literally expansive nature of neuroscience:

In 2006, Science published a remarkable piece of research by neuroscientists from Addenbrooke’s Hospital in Cambridge. By scanning the brain of a patient in a vegetative state, Adrian Owen and his colleagues found evidence of conscious awareness. Unlike a coma, the vegetative state is usually defined as one in which patients are awake – they can open their eyes and exhibit sleep-wake cycles – but lack any consciousness or awareness. To discover consciousness in the vegetative state would challenge, therefore, the basic understanding of the phenomenon.

The Addenbrooke’s patient was a twenty-three-year-old woman who had suffered traumatic brain injury in a traffic accident. Owen and his team set her various mental imagery tasks while she was in an MRI scanner. They asked her to imagine playing a game of tennis, and to imagine moving through her house, starting from the front door. When she was given the first task, significant neural activity was observed in one of the motor areas of the brain. When she was given the second, there was significant activity in the parahippocampal gyrus (a brain area responsible for scene recognition), the posterior parietal cortex (which represents planned movements and spatial reasoning) and the lateral premotor cortex (another area responsible for bodily motion). Amazingly, these patterns of neural responses were indistinguishable from those observed in healthy volunteers asked to perform exactly the same tasks in the scanner. Owen considered this to be strong evidence that the patient was, in some way, conscious. More specifically, he concluded that the patient’s “decision to cooperate with the authors by imagining particular tasks when asked to do so represents a clear act of intention, which confirmed beyond any doubt that she was consciously aware of herself and her surroundings”.

Owen’s discovery has an emotional force that one rarely finds in scientific research. The patients in the vegetative state resemble those with locked-in syndrome, a result of total (or near-total) paralysis. But locked-in patients can sometimes demonstrate their consciousness by moving (say) their eyelids to communicate (as described in Jean-Dominique Bauby’s harrowing and lyrical memoir, The Diving Bell and the Butterfly, 1997). But the vegetative state was considered, by contrast, to be a condition of complete unconsciousness. So to discover that someone in such a terrible condition might actually be consciously aware of what is going on around them, thinking and imagining things, is staggering. I have been at academic conferences where these results were described and the audience was visibly moved. One can only imagine the effect of the discovery on the families and loved ones of the patient.

Crane’s article is very far from a piece of messianic neurohype, but he also acknowledges the sheer power of this technology to expand our awareness of what it means to be conscious and human, and the clinical benefit that is not something to be sniffed at. But, it doesn’t solve the mind-body problem – it actually accentuates it:

Does the knowledge given by fMRI help us to answer Julie Powell’s question [essentially a restatement of the mind-body problem by a food writer]? The answer is clearly no. There is a piece of your brain that lights up when you talk and a piece that lights up when you walk: that is something we already knew, in broad outline. Of course it is of great theoretical significance for cognitive neuroscience to find out which bits do what; and as Owen’s work illustrates, it is also of massive clinical importance. But it doesn’t tell us anything about “how we can be”. The fact that different parts of your brain are responsible for different mental functions is something that scientists have known for decades, using evidence from lesions and other forms of brain damage, and in any case the very idea should not be surprising. FMRI technology does not solve the mind–body problem; if anything, it only brings it more clearly into relief.

Read the whole thing, as they say. It is a highly stimulating read, and also one which, while it points out the limits of neuroimaging as a way of solving the difficult problems of philosophy, gives the technology and the discipline behind it its due.

Leandro Herrero – “The best contribution that Neurosciences can make to Management and Leadership is to leave the room”

A while back I reviewed I Know What You’re Thinking: Brain Imaging and Mental Privacy in the Irish Journal of Psychological Medicine, and discussed a couple of studies which illustrate the dangers of what could best be called neuro-fetishism:

In 2010, Dartmouth University neuroscientist Craig Bennett and his colleagues subjected an experimental subject to functional magnetic resonance imaging. The subject was shown ‘a series of photographs with human individuals in social situations with a specified emotional valence, either socially inclusive or socially exclusive’. The subject was asked to determine which emotion the individual in the photographs were experiencing. The subject was found to have engaged in perspective-taking at p<0.001 level of significance. This is perhaps surprising, as the subject was a dead salmon.

In 2007, Colorado State University’s McCabe and Castel published research indicating that undergraduates, presented with brief articles summarising fictional neuroscience research (and which made claims unsupported by the fictional evidence presented) rated articles that were illustrated by brain imaging as more scientifically credible than those illustrated by bar graphs, a topographical map of brain activation, or no image at all. Taken with the Bennett paper, this illustrates one of the perils of neuroimaging research, especially when it enters the wider media; the social credibility is high, despite the methodological challenges.

I am becoming quite addicted to Leandro Herrero’s Daily Thoughts and here is another. One could not accuse Herrero of pulling his punches here:

I have talked a lot in the past about the Neurobabble Fallacy. I know this makes many people uncomfortable. I have friends and family in the Neuro-something business. There is neuro-marketing, neuro-leadership and neuro-lots-of-things. Some of that stuff is legitimate. For example, understanding how cognitive systems react to signals and applying this to advertising. If you want to call that neuro-marketing, so be it. But beyond those prosaic aims, there is a whole industry of neuro-anything that aggressively attempts to legitimize itself by bringing in pop-neurosciences to dinner every day.

In case anyone doubts his credentials:

Do I have any qualifications to have an opinion on these bridges too far? In my previous professional life I was a clinical psychiatrist with special interest in psychopharmacology. I used to teach that stuff in the University. I then did a few years in R&D in pharmaceuticals. I then left those territories to run our Organizational Architecture company, The Chalfont Project. I have some ideas about brains, and some about leadership and organizations. I insist, let both sides have a good cup of tea together, but when the cup of tea is done, go back to work to your separate offices.

It is ironic that otherwise hard-headed sceptics tend to be transfixed by anything “neuro-” – and Leandro Herrero’s trenchant words are just what the world of neurobabble needs. In these days of occasionally blind celebration of trans-, multi- and poly- disciplinary approaches, the “separate offices” one is bracingly counter-cultural…

Review of I Know What You’re Thinking: Brain Imaging and Mental Privacy, Irish Journal of Psychological Medicine, February 2016

Original here

I Know What You’re Thinking: Brain Imaging and Mental Privacy, Edited by Richmond , Rees  and Edwards

 

In 2010, Dartmouth University neuroscientist Craig Bennett and his colleagues subjected an experimental subject to functional magnetic resonance imaging. The subject was shown ‘a series of photographs with human individuals in social situations with a specified emotional valence, either socially inclusive or socially exclusive’. The subject was asked to determine which emotion the individual in the photographs were experiencing. The subject was found to have engaged in perspective-taking at p<0.001 level of significance. This is perhaps surprising, as the subject was a dead salmon.

This may sound like a parody, or a debunking of neuroimaging, but in fact it was intended to point out the considerable challenge of neuroimaging research, and more specifically how the vast number of potential variables inherent in this research pushes ‘traditional’ statistical methodology to its limit.

In 2007, Colorado State University’s McCabe and Castel published research indicating that undergraduates, presented with brief articles summarising fictional neuroscience research (and which made claims unsupported by the fictional evidence presented) rated articles that were illustrated by brain imaging as more scientifically credible than those illustrated by bar graphs, a topographical map of brain activation, or no image at all. Taken with the Bennett paper, this illustrates one of the perils of neuroimaging research, especially when it enters the wider media; the social credibility is high, despite the methodological challenges.

The title of this book alone leads one to expect that it is an exploration of one widespread popular notion about neuroimaging; that it is a way of reading thoughts. Some of the essays do explore this theme; but most don’t, at least not that directly. Notwithstanding the inclusion of an essay by the former editor of this journal, the book is something like the proverbial curate’s egg, good in parts (without any partiality, Professor Kelly’s contribution is one of the good parts).

There are four sections to the book. First, an overview of the state of the art of neuroimaging and of the conceptual questions raised. Second, a focus on medical applications of mind reading through brain imaging. Third, a section on criminal justice, and finally one on mind reading and privacy.

Among the contributors, practitioners of neuroimaging-based research alternate with (relative) skeptics of the approach. It is interesting to observe the actual researchers, rather than being zealots, are tentative and provisional in their suggestions; the skeptics are more forthright. For instance, Colin Campbell and Nigel Eastman baldly evoke the ghost of phrenology – evidently a nearby shade for many contemplating this area – in the conclusion of their essay on neuroimaging on the law. Although this is a valid point – and undoubtedly some commercially promoted ‘mind reading’ technologies are pure hokum – it is rather jarring conclusion to their essay.

There is nevertheless much useful and stimulating material here. John-Dylan Haynes provides a useful overview of brain imaging technology itself and some of the possibilities and limits of the field. The second section, rather alarmingly titled ‘Medical applications of mind reading through brain imaging’, is generally comprised of thoughtful, nuanced discussions of the issues in non-responsive patients, pain, and mental health.

However, the essays are overall quite mixed in tone and content. Some bear the hallmarks of generic essays on particular topics with relatively little directly on the topic of the book (for instance, Annabelle Lever’s chapter on ‘Neuroscience versus privacy’ which is rather an extended discussion of privacy with some mentions of neuroscience). Contributors often rehash discussions that are covered at greater length, sometimes rather tediously so, in other essays.

The Hastings Centre Report ‘Interpreting neuroimages: an introduction to the technology and its limits’ – available at http://www.thehastingscenter.org/Publications/SpecialReports/Detail.aspx?id=6841 – covers much of the same ground as this book but more concisely and more accessibly, particularly Martha J. Farah’s essay in the ‘Brain images, babies, and bathwater: critiquing critiques of functional neuroimaging’. With the Hastings Centre Report freely accessible in the public domain it is hard to advise readers to part with their money for this volume.

“Godterms”

Yesterday I came across the following tweet:

I had never come across the coinage “Godterm” before – and the meaning I ascribed to it was simply this: something that is, as the saying goes, like motherhood and apple pie; no-one wants to be seen to be arguing against it. This usually reflects that it is indeed a Good Thing, maybe even a Very Good Thing, maybe an Extremely Good Thing. However the term becomes something of a rhetorical blunderbuss – this is Patient-Centered, and YOU AREN’T AGAINST PATIENT-CENTEREDNESS, ARE YOU?

I tweeted Lorelei Lingard expressing that “godterm” was a useful find and she replied:

There are indeed godterms lurking everywhere – “innovation” is another. Note that pointing out that X is a godterm does not mean one is criticising X, but rather the use of X as a shield to deflect scrutiny.

Thanks again to Lorelei Lingard for introducing me to this term! I look forward to happy godterm excavation.